ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

ГЕОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ ЗАПАДНОГО УРАЛА

Сборник научных статей

Выпуск 6(43)

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

ГЕОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ ЗАПАДНОГО УРАЛА

Сборник научных статей

Выпуск 6(43)

Под общей редакцией П. А. Красильникова

Пермь 2023

Геология и полезные ископаемые Западного Урала [Электронный регорователь: Сурс] : сборник научных статей / под общ. ред. П. А. Красильникова; Пермский государственный национальный исследовательский университет. — Пермь, 2023. — Вып. 6(43). — 27,5 Мб; 322 с. — Режим доступа: http://www.psu.ru/files/docs/science/books/sborniki/geologiya-i-poleznye-iskopaemye-zapadnogo-urala-43.pdf. — Заглавие с экрана.

ISBN 978-5-7944-3085-1 ISBN 978-5-7944-3999-1 (вып. 6(43))

Сборник содержит научные статьи по материалам 43 Всероссийской научно-практической конференции с международным участием «Геоэкология, инженерная геодинамика, геологическая безопасность. Печеркинские чтения», состоявшейся 23–24 мая 2023 г. в Пермском государственном национальном исследовательском университете.

Статьи посвящены геологии западного склона Урала, Камского Приуралья и других регионов России. Рассмотрены общие вопросы геологии, проблемы минералогии, литологии, месторождений твердых полезных ископаемых нефти и газа, а также вопросов геофизических методов исследования недр, гидрогеологии, карстоведения, инженерной геологии, экологической геологии.

Для геологов широкого профиля, нефтяников, геофизиков и других специалистов по исследованию недр Земли, добыче полезных ископаемых, экономистов, а также для студентов геологических направлений и специальностей вузов.

УДК 550.8+622 ББК 26.3

Печатается по решению ученого совета геологическогофакультета Пермского государственного национального исследовательского университета

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

д. г.-м. н. П. А. Красильников (главный редактор), д. г.-м. н. И. С. Копылов (отв. редактор), Е. А. Меньшикова, Е. Е. Кожевникова, В. И. Костицын, О. Б. Наумова, В. В. Середин

РЕЦЕНЗЕНТЫ

д. т. н., начальник отдела геофизических исследований ООО НИППППД «Недра»

А. В. Татаркин

д. т. н., директор по промысловой геофизике ПАО «Пермнефтегеофизика»

А. В. Шумилов

ISBN 978-5-7944-3085-1 ISBN 978-5-7944-3999-1 (вып. 6(43))

© ПГНИУ, 2023

М.К. Кашин, А.А. Голубев, Д.Р. Золотарев, С.В. Щербаков ПГНИУ, maksman97@gmail.com

МОДЕЛЬ РАСТВОРЕНИЯ СУЛЬФАТНЫХ ПОРОД В ОСНОВАНИИ СВАЙНОГО ФУНДАМЕНТА

Свайные фундаменты имеют широкое распространение в строительстве. В случае опирания свайного фундамента на карстующиеся горные породы существует риск растворения основания сваи с потерей несущей способности сваи и последующей деформации сооружения. В данном исследовании в лабораторных условиях построена модель растворения ангидрита, выступающего основанием свайного фундамента.

Ключевые слова: карст, свайный фундамент, ангидрит, растворение.

M.K. Kashin, A.A. Golubev, D.R. Zolotarev, S.V. Scherbakov Perm State University, maksman97@gmail.com

MODEL OF SULFATE ROCKS DISSOLUTION IN THE PILED FOUNDATION

Piled foundations are widely used in construction. In the case when pile foundations are based on karst rocks, there is a risk of dissolution of the base of the pile with loss of bearing capacity of the pile and subsequent deformation of the structure. In this study, a model of dissolution of anhydrite acting as the base of a pile foundation was constructed in laboratory conditions. **Key words:** karst, pile foundation, anhydrite, dissolution.

При поверхностном залегании специфических грунтов, грунтов с небольшими значениями деформационных характеристик оптимальным проектным решением является устройство свайного фундамента с опиранием на нижележащие более плотные грунты. На закарстованных территориях часто несущей породой являются растворимые скальные грунты (известняки, ангидриты, гипсы и пр.). Активизация процесса растворения может происходить на контакте свай с карстующимися породами ввиду транзита вод по боковым поверхностям свай [4]. Следствием может являться снижение прочностных характеристик свайного основания вплоть до его крена и выпадения отдельных свай из ростверка, влекущее неравномерные осадки зданий и сооружений.

В настоящем исследовании проведено моделирование процесса растворения под острием свай в лабораторных условиях. В качестве растворимой породы использован образец из керна ангидрита, отобранного в Чернушинском районе Пермского края. Образец представляет собой диск диаметром 90 мм, высотой 1,6 см, его центральная часть диаметром 24 мм представляет область размещения сваи, имитированной в виде пластмассового конуса.

Перед началом испытания образец взвешивается на электронных весах, с помощью клейкой ленты производится гидроизоляция части образца, расположен-

[©] Кашин М.К., Голубев А.А., Золотарев Д.Р., Щербаков С.В., 2023

ной за пределами основания сваи (рис.1). В дальнейшем опытный образец размещают на установке по растворению. Установка по растворению представляет из себя закрепленный бутилированный источник воды, с которого подается вода в капельном состоянии на образец грунта на пластиковый конус (рис. 1).

В испытании исследованы 2 образца ангидрита массой 292,2 и 263,8 г. Образцы ангидрита помещены в описанную установку, на них перманентно подается водопроводная вода температурой 25 °C. Периодически образцы грунтов взвешиваются и фотографируются.

Рис. 1. Образец растворяемой породы – слева; Стенд по растворению породы – справа

Ангидрит является сульфатной породой и относится к среднерастворимым породам [3]. Степень растворимости сульфатных пород по данным различных исследований составляет q_{sr} от 1 до $10~r/дm^3$ [1, 3, 5], скорость растворения 1,0-10,0 см/год. Стоит также учитывать, что скорость растворения ангидритов меньше скорости растворения гипсов [7]. Столь существенный диапазон значений связан в первую очередь с разницей в характеристиках карстующихся пород (их литологического и минералогического состава, возраста, генезиса).

Также необходимо учитывать, что скорость растворения пород всегда варьирует в зависимости от условий окружающей среды. До текущего исследования нами проведены исследования растворимости пород в специально оборудованных скважинах [2]. Скорость растворения образцов сульфатных пород, полученная в ходе таких испытаний получилась от 0,96 до 1,76 см/год.

В ходе четырехмесячного эксперимента скорость растворения двух образцов существенно различалась: образец № 1 поэтапно терял массу, в то время как образец № 2 в течение двух месяцев набирал массу, а затем также начал её терять

в меньших масштабах (рис. 2). Подобная разница может быть связана с несовершенством установки по растворению (скорость потока воды на 2 пробы различается) и возможной разницей в загипсованности образцов (образец № 2 менее загипсован, поэтому при контакте с водой ангидрит не растворяется, но преобразуется в гипс).

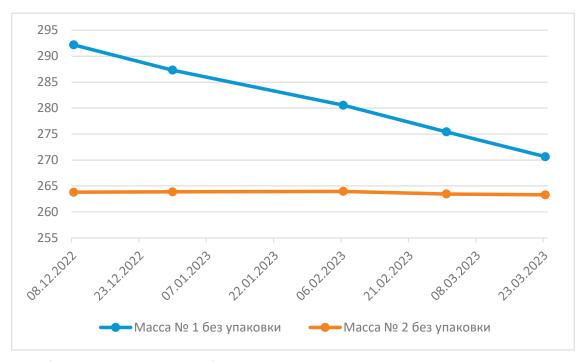


Рис. 2. График изменения массы образца

Масса первого образца в ходе проведения испытания уменьшилась на 21,54 г (скорость растворения образца 74,2 г/год). Растворение образца происходило относительно равномерно, наименьшая скорость растворения зафиксирована в период 30.12.2022-06.02.2023 г, наибольшая скорость растворения в период 06.02.2023-01.03.2023 г.

Масса второго образца в ходе проведения испытания уменьшилась на 0,5 г (скорость растворения образца 1,72 г/год). Растворение образца на раннем этапе проведения опыта (с 08.12.2022 по 06.02.2023) не происходило. Наибольшая скорость растворения образца зафиксирована в период 06.02.2023-08.03.2023.

Рассмотрим наиболее растворяемый образец № 1. Скорость растворения образца составила (экстраполированная) 74,2 г/год. Плотность образца, измеренная в начале испытания, 2,87 г/см³. При допущении, что плотность образца существенно не изменится с началом опыта, то за годовой период образец потеряет в объеме 25,82 см³ (изначальный объем породы 101,74 см³, предполагаемый объем после года растворения 75,91 см³). Если перевести единицы объема во время и расстояния во время, получим, что скорость растворения рассматриваемого образца 0,4 см/год, что несколько ниже как скорости растворения ангидрита по данным нормативной литературы, так и скорости растворения образцов в природных условиях.

Исходя из проведенного опыта, можно сделать вывод о том, что вода, скапливающаяся в основании свайного фундамента, может растворять сульфатные породы, на которых этот фундамент расположен. Скорость растворения ангидрита, выступающего в роли несущего основания сваи, хоть и несколько ниже нормативных значений скорости растворения ангидрита, с учетом срока службы сооружения требует учета на стадии проектирования объекта. В случае использования растворимых пород в качестве грунтов-оснований для свайного фундамента необходимо предусмотреть комплекс мер по их водоизоляции.

Библиографический список

- 1. Дублянский В.Н., Дублянская Г.Н. Карстоведение. Ч. 2: Региональное карстоведение: учеб. пособие / Перм. ун-т. Пермь, 2008. 267 с. ил. 75.
- 2. *Катаев В.Н. Золотарев, Д. Р. Щербаков С. В.* Опыт растворения карбонатных и сульфатных пород // Теория и практика современной карстологии и спелеологии: Материалы международной научно-практической конференции ііі крымские карстологические чтения, Симферополь, 27 сентября 2021 года. Симферополь: ФГАОУ ВО Крымский федеральный университет им. В.И. Вернадского, 2021. С. 50–56.
- 3. Катаев В. Н., Золотарев Д. Р., Щербаков С. В., Дробинина Е. В. Оценка скорости растворения карбонатных и сульфатных пород // Геология и полезные ископаемые Западного Урала. 2022. № 5(42). С. 226-231.
- 4. СП 22.13330.2016. Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*. М.: Минрегион России, 2010.
- 5. СП 499.1325800.2021 «Инженерная защита территорий, зданий и сооружений от карстовосуффозионных процессов»
- 6. *Klimchouk A*. The dissolution and conversion of gypsum and anhydrite // International Journal of Speleology 25(3–4):21–36, 1996.
- 7. *Худеньких К.О., Катаев В.Н.* Сравнительный анализ изучения карстовых процессов на урбанизированных территориях и месторождениях строительного гипса // Вестник Пермского университета. Геология. 2022. Т. 21. № 3. С. 264—281.